<u>PROBLEM</u>

The value of c in Lagrange's theorem for the function $f(x) = \log \sin x$ in the interval $[\pi/6, 5\pi/6]$ isa. $\pi/4$ b. $\pi/2$ c. $2\pi/3$ d. none of these

SOLUTION

b.
$$f\left(\frac{5\pi}{6}\right) = \log \sin\left(\frac{5\pi}{6}\right) = \log \sin\frac{\pi}{6} = \log \frac{1}{2} = -\log 2$$
$$f\left(\frac{\pi}{6}\right) = \log \sin\frac{\pi}{6} = -\log 2$$
$$f'(c) = \frac{1}{\sin x} \cos x = \cot x$$
By Lagrange's mean value theorem,
$$\frac{f(5\pi/6) - f(\pi/6)}{(5\pi/6) - (\pi/6)} = \cot c$$
or $\cot c = 0$ or $c = \frac{\pi}{2}$ Thus, $c = \frac{\pi}{2} \in (\pi/6, 5\pi/6)$.